
International Journal of Engineering Applied Sciences and Technology, 2025
Vol. 9, Issue 12, ISSN No. 2455-2143, Pages 121-128

Published Online April 2025 in IJEAST (http://www.ijeast.com)

121

DECENTRALIZED REAL-TIME

COMMUNICATION APPLICATION

Raj Nishad, Siddhant Mali, Harshit Pandey, Asmita Marathe

CS & E (Cybersecurity) TCET

Mumbai, India

Abstract: Peermesh is a cutting-edge, web-based,

decentralized, peer-to-peer (P2P) communication

application designed to deliver secure, real-time

messaging with high performance and minimal

bandwidth usage. Developed with Rust, Peermesh

leverages the language’s memory safety and

concurrency features to optimize speed and efficiency,

making it well-suited for modern mobile and web-based

communication needs. It supports various

communication methods, including rich text chat that

can be cached for offline access, providing a seamless

user experience even in low-bandwidth scenarios.

The application utilizes WebRTC, an open-source

protocol that enables audio and video calling and

concurrent screen sharing capabilities directly in the

browser, and WebSocket for full-duplex, low-latency

data transmission, enhancing real-time communication.

Peermesh also emphasizes privacy and security,

incorporating optional end-to-end encryption to ensure

that messages, photos, and other shared content remain

private and accessible only to intended recipients.

Moreover, users have the choice to persist encrypted

messages on a centralized network or retain them

strictly on their devices, adding an additional layer of

control over personal data.

With its robust content-sharing features, Peermesh aims

to redefine secure communication by combining high-

performance technology with rigorous privacy

protections, making it a versatile and secure solution for

both personal and professional use.

Keywords—WebRTC, Decentralized, Privacy

I. INTRODUCTION

The COVID-19 pandemic significantly accelerated the

adoption of video conferencing and real-time

communication (RTC) applications, with usage increasing

by 256%. Popular video chat apps witnessed around 30

million active users at any given time, and the most popular

applications achieved approximately 500 million

downloads. Whether for work or entertainment, these

applications provided a crucial platform for people to

connect during periods of isolation and global crisis.

However, the pandemic was not the only challenge of 2020.

This period also saw the rise of autocratic regimes and

military repression, leading to public dissent and protests in

various regions. In Myanmar and Sudan, military coups

disrupted governance, while Hong Kong experienced

increased authoritarian oversight amid ongoing protests.

These events underscored the need for secure, private

communication platforms that could facilitate safe

interactions without government interference or

surveillance.

Real-time communication differs from time-shifted

interactions, such as emails, by enabling immediate,

synchronous exchanges. Despite the advantages of existing

RTC applications, most are controlled by large corporations

with centralized databases, focused on specific

demographics and limited in terms of user privacy. Such

platforms store vast amounts of user data, creating potential

vulnerabilities and raising concerns over data security and

privacy.

Peermesh addresses these concerns by providing a

decentralized, user-friendly, and privacy-focused

communication platform. Unlike mainstream RTC

applications, Peermesh does not rely on centralized data

storage, thereby minimizing the risk of unauthorized access.

It is designed to cater to diverse user needs and to eliminate

the communication restrictions imposed by corporate-driven

products like Google Meet and Microsoft Teams. With a

commitment to empowering individuals, particularly those

in oppressive environments, Peermesh aims to enable secure

and private communication for a wide range of use cases.

This paper explores the development, features, and potential

impact of Peermesh as a versatile and secure RTC

application.

II. BACKGROUND

The surge in the use of real-time communication (RTC)

applications during the COVID-19 pandemic highlighted a

growing dependence on digital platforms for both personal

and professional interactions. With millions of users relying

on video conferencing apps for work, education, and social

connection, it became clear that RTC solutions had become

essential tools. However, the pandemic period also

coincided with political unrest in various regions. Countries

like Myanmar and Sudan faced military coups, while Hong

Kong experienced increased authoritarian measures amidst

International Journal of Engineering Applied Sciences and Technology, 2025
Vol. 9, Issue 12, ISSN No. 2455-2143, Pages 121-128

Published Online April 2025 in IJEAST (http://www.ijeast.com)

122

ongoing protests. These circumstances exposed a crucial

need for secure, private, and reliable communication tools,

especially for those under surveillance or at risk of

repression.

Most widely-used RTC applications are owned by large

technology companies that utilize centralized servers to

store user data. Although these platforms—such as Google

Meet, Zoom, and Microsoft Teams—offer functional

communication tools, their centralized architectures raise

significant privacy and security concerns. Centralized

databases can become single points of failure, vulnerable to

hacking, data breaches, and potential misuse by third

parties, including governments. Moreover, centralized RTC

applications often prioritize specific demographics, focusing

on enterprise solutions or education, and may lack flexibility

to accommodate a broader range of users, such as those in

high-risk or politically sensitive environments.

Peermesh was developed in response to these challenges,

aiming to provide a decentralized, privacy-focused RTC

platform. By utilizing peer-to-peer (P2P) technology,

Peermesh minimizes reliance on centralized data storage,

offering users increased control over their data and reducing

the risks associated with centralized systems. Built with

Rust for optimized performance, Peermesh also caters to

users with low bandwidth requirements and provides a

versatile set of features, including end-to-end encrypted

messaging, rich text chat, audio and video calling, and

screen sharing through WebRTC and WebSocket protocols.

The design of Peermesh is tailored to support diverse

communication needs while prioritizing security and

privacy, making it an adaptable tool for users in various

contexts—from corporate environments to regions with

restricted freedoms.

This paper aims to explore the development, functionality,

and implications of Peermesh as a decentralized RTC

application, assessing its potential to address the limitations

of existing communication platforms and meet the demand

for secure, real-time communication in a complex global

landscape.

III. METHODOLOGY

Here's a more detailed methodology section for your

research paper, focusing on the implementation of a P2P

real-time communication system using WebRTC and deep

learning for image classification:

Chapter 3: Implemented System

3.1 System Architecture / Model

The proposed system architecture consists of a multi-tier

application stack that integrates various technologies to

facilitate efficient real-time communication and deep

learning model deployment. The architecture comprises

several key components:

1. Frontend: Developed using TypeScript, the frontend is

designed for high performance and faster build times. It

leverages modern web standards to create an interactive user

interface that allows users to initiate and participate in real-

time video conferencing sessions.

2. Backend: The server-side is built on Node.js, which

handles incoming requests and manages the WebRTC

connections. The backend employs Sockets as the primary

communication mechanism, enabling real-time data

exchange between clients.

3. Communication Protocols:

- tRPC: This ensures type safety between requests and

responses, allowing for seamless integration between the

frontend and backend.

International Journal of Engineering Applied Sciences and Technology, 2025
Vol. 9, Issue 12, ISSN No. 2455-2143, Pages 121-128

Published Online April 2025 in IJEAST (http://www.ijeast.com)

123

- WebRTC: The WebRTC API serves as the backbone for

real-time media communication, enabling peer-to-peer

video and audio transmission.

4. Peer-to-Peer Communication: GunJS is incorporated as a

decentralized communication server that provides secure

and encrypted text-based communication between users.

This ensures that data is transmitted directly between peers,

reducing the load on central servers and enhancing privacy.

5. Cache and Authentication: The system integrates a

caching mechanism to improve response times and an

authentication database to manage user credentials and

sessions securely.

3.2 Hardware Specifications

Development Environment:

- Operating System: 64-bit

- CPU: Intel i9-9900K

- RAM: 32 GB

- GPU: Nvidia RTX 2080 Ti (11 GB VRAM)

- Screen Resolution: 2160 x 1440

Test Environment:

- Operating System: 32-bit

- CPU: Intel Core 2 Duo

- RAM: 4 GB

- Graphics: Intel U620 Integrated Graphics

- Screen Resolution: 1366 x 768

Minimum Usage Requirements:

- Internet Connection: Required for real-time

communication.

- CPU Architecture: x86_64; 2nd generation Intel Core or

newer, or AMD CPU.

- RAM: Minimum of 2 GB.

- Disk Space: At least 100 MB of available storage.

- Screen Resolution: Minimum of 1334 x 750.

3.3 Software Specifications

1. TypeScript: A superset of JavaScript that compiles to

clean JavaScript. TypeScript adds optional types to

JavaScript, enhancing tooling and enabling the development

of large-scale applications.

2. Rust: This language emphasizes performance and type

safety. It operates close to the OS kernel, allowing for

efficient memory management.

3. Next.js: A JavaScript framework for building fast, user-

friendly static websites and web applications. It provides

server-side rendering and static site generation capabilities.

4. Socket.IO: An event-driven library for real-time web

applications that enables bidirectional communication

between web clients and servers.

5. WebRTC: An open-source project that provides real-time

communication capabilities (voice, text, and video) directly

between web browsers.

6. Redis: An in-memory data structure store used as a key-

value database, cache, and message broker.

7. PostgreSQL: An advanced open-source relational

database that supports both relational and JSON querying,

known for its stability and high levels of data integrity.

8. tRPC: A lightweight library that allows the creation of

fully type-safe APIs without the need for schemas or code

generation.

9. GunJS: A decentralized, real-time graph database that

allows for seamless data synchronization between connected

nodes.

10. Tailwind CSS: A utility-first CSS framework that

enables rapid UI development without the need for

extensive custom CSS.

4.1 Architectural Design

The architectural design of the implemented system

leverages deep learning and WebRTC technologies to

facilitate real-time communication and image classification.

The system's components are interconnected as follows:

The architectural design of the implemented system

leverages deep learning and WebRTC technologies to

International Journal of Engineering Applied Sciences and Technology, 2025
Vol. 9, Issue 12, ISSN No. 2455-2143, Pages 121-128

Published Online April 2025 in IJEAST (http://www.ijeast.com)

124

facilitate real-time communication and image classification.

The system's components are interconnected as follows:

1. Deep Learning Model: The core of the image

classification system is a Convolutional Neural Network

(CNN) designed to automatically extract features from input

images. The model architecture includes several layers:

- Convolutional Layers: Extract features from the input

images using convolution operations.

- Pooling Layers: Reduce the dimensionality of the feature

maps, enhancing computational efficiency.

- Fully Connected Layers: Connect neurons between layers,

leading to the classification output.

2. Dropout Layer: Implemented to prevent overfitting,

ensuring that the model generalizes well to unseen data by

randomly dropping neurons during training.

3. Activation Functions: Non-linear functions (e.g., ReLU,

SoftMax) that determine the output of each neuron and

enable the model to learn complex relationships.

4. WebRTC Communication: The process of establishing a

peer-to-peer connection begins when a user accesses the

WebRTC page. The following steps outline this process:

- The browser requests access to the user's webcam and

microphone.

- An SDP packet is generated to initiate the connection,

containing essential media data and supported parameters.

- This packet is sent to other participants, often through a

signaling server and WebSocket protocol.

- A STUN server is utilized to determine the device’s

external IP address, facilitating NAT traversal for peer

connections.

- Upon successful connection, both clients exchange

information about their connection states.

4.2 User Interface Design

The user interface is designed to facilitate smooth

interaction and enhance user experience. Key design

elements include:

1. Data Collection: Data for training the CNN is collected

from sources like Kaggle, specifically focusing on image

datasets (e.g., potato leaf images).

2. Data Preprocessing:

- Loading Data: The data is loaded using TensorFlow

datasets, allowing the creation of complex input pipelines.

- Data Augmentation: Techniques such as random cropping,

rotation, and flipping are applied to increase dataset

variability and reduce overfitting.

3. Model Building: The CNN is trained on batches of

images, achieving high accuracy (up to 99%). The model

architecture is optimized for efficiency and accuracy.

4. Model Quantization: To deploy the model on mobile

devices, it is quantized to reduce its size and energy

consumption. TensorFlow Lite (TF Lite) is employed for

on-device inference, optimizing the model for mobile

environments.

5. Android Application Development: An Android app is

developed using React Native, integrating the trained deep

learning model. The app may utilize Google Cloud

functions for processing or host the model locally, enabling

real-time image classification within the app.

International Journal of Engineering Applied Sciences and Technology, 2025
Vol. 9, Issue 12, ISSN No. 2455-2143, Pages 121-128

Published Online April 2025 in IJEAST (http://www.ijeast.com)

125

This detailed methodology outlines the architecture,

hardware and software specifications, implementation

details, and user interface design, providing a

comprehensive view of your research project. Let me know

if you need further modifications or additional sections! The

methodology employed in this research focuses into the

sophisticated tactics employed by modern malware to evade

detection and compromise security systems. Central to this

analysis are three primary techniques: process injection,

obfuscation, and defense evasion, each designed to exploit

vulnerabilities in antivirus and security tools. These

methods not only enable malware to infiltrate systems

covertly but also allow it to sustain operations by avoiding

detection for extended periods. Process injection involves

the insertion of malicious code into trusted processes,

allowing the malware to operate under the radar of antivirus

systems. Obfuscation techniques, which alter or disguise the

malware's code, make it increasingly difficult for static and

heuristic-based detection methods to recognize the threat.

Through this exploration, we aim to provide a deeper

understanding of how these advanced techniques undermine

the effectiveness of current antivirus solutions, necessitating

the development of more adaptive, behavior-based defenses.

Flow Chart:

International Journal of Engineering Applied Sciences and Technology, 2025
Vol. 9, Issue 12, ISSN No. 2455-2143, Pages 121-128

Published Online April 2025 in IJEAST (http://www.ijeast.com)

126

IV. ANALYSIS

The proposed WebRTC application, Peermesh, reflects a

forward-thinking approach in the domain of real-time

communication systems, leveraging decentralization to

enhance user experience, privacy, and performance. Below

is a detailed analysis of key aspects involved in the

development, functionality, and future prospects of

Peermesh.

Decentralization is at the heart of Peermesh, and this

approach provides several significant advantages. Unlike

traditional centralized communication platforms that rely on

central servers for data routing, Peermesh employs a peer-

to-peer (P2P) model with a blockchain layer to manage and

filter connections. This architecture not only reduces

dependency on central servers but also enhances privacy

and security by minimizing data exposure to third parties.

Additionally, decentralized networks offer increased

resilience against server outages, providing a more reliable

communication medium. In Peermesh's case, blockchain

integration will allow users to connect directly with peers

through a secure and transparent filtering process. However,

decentralization introduces challenges related to latency and

bandwidth management, as each peer connection has unique

network constraints. Overcoming these challenges will

require efficient algorithms for peer selection and network

optimization, which are areas for ongoing research and

development.

2. Blockchain Integration

The use of blockchain for peer selection is a novel addition,

ensuring a transparent and verifiable way to manage

International Journal of Engineering Applied Sciences and Technology, 2025
Vol. 9, Issue 12, ISSN No. 2455-2143, Pages 121-128

Published Online April 2025 in IJEAST (http://www.ijeast.com)

127

connections. Blockchain can enhance the security of the

platform by offering immutable records of interactions and

eliminating the risks associated with centralized servers. In

Peermesh, blockchain will primarily function as a filter,

determining the eligibility of peers based on certain criteria.

This adds an additional layer of privacy and security, as

users retain control over their interactions without relying

on third-party intermediaries. However, the computational

demands of blockchain may impact the performance of real-

time communication. To address this, efficient consensus

mechanisms and lightweight blockchains, like those

optimized for mobile environments, could be explored to

ensure low latency in peer selection.

3. Protocol Upgrades (QUIC and Web-Transport)

Moving from TCP to the QUIC protocol reflects an

ambition to improve the efficiency and speed of data

transmission. QUIC, with its low-latency features and built-

in encryption, is highly suitable for real-time applications

like Peermesh, where rapid and secure data exchange is

essential. The decision to use the Web-Transport API over

Web-Sockets aligns with Peermesh’s goal of maintaining

high performance, as Web-Transport offers additional

capabilities for unreliable transmission, which can be

beneficial in cases where small data losses do not

significantly affect the user experience. However, the

implementation of these protocols will require adjustments

in the application’s architecture, as they diverge from

traditional Web-Socket and HTTP/2 protocols commonly

used in similar applications. Thorough testing and

optimization will be necessary to ensure that these protocol

upgrades enhance, rather than hinder, Peermesh's

performance in various network conditions.

4. Adoption of HTTP/3

The transition from HTTP/2 to HTTP/3 represents a

strategic move to improve performance further. HTTP/3,

which is built on QUIC, allows for faster connection setup

and data delivery compared to HTTP/2. This change will

enhance the overall responsiveness of Peermesh,

particularly during connection initialization and in

environments with high packet loss rates. By adopting

HTTP/3, Peermesh can offer a more seamless user

experience, particularly for mobile users who may

experience fluctuating network conditions. However, since

HTTP/3 is still in the early stages of adoption, compatibility

issues may arise. Implementing HTTP/3 will involve careful

handling of fallback mechanisms to ensure that users on

older networks can still access the application without

interruptions.

This graph shows the cumulative growth of malware and

potentially unwanted applications (PUA) from 2008 to

2024. There is a clear exponential increase in both malware

and PUA, with malware consistently comprising a larger

proportion. By 2024, the total amount of malware has

surpassed 1.2 billion. The consistent increase highlights the

rising prevalence of malware globally, with major surges in

2019 through 2024. This growth could indicate an

increasingly hostile cyber landscape, driven by the

advancement of sophisticated malware and evasion

techniques. It also points to the growing ineffectiveness of

traditional antivirus solutions in halting this steady rise.

The above graph tracks the introduction of new malware

and PUA over the same period. While there was a peak

around 2015-2017, the graph shows fluctuations over the

years, with significant spikes in 2019 and 2021. New

malware consistently represents a substantial threat, with

major growth seen in 2021, but there is a slight decrease as

of 2024. These fluctuations might reflect changes in attack

vectors or mitigation strategies. However, the overall trend

suggests that while the rate of new malware creation might

V. FUTURE SCOPE

The future development of Peermesh will center on

adopting and integrating new technologies and standards to

maintain its relevance and performance in the rapidly

evolving field of real-time communication. Initially, this

will involve a shift from the existing Web-Sockets protocol

to the newly proposed Web-Transport API, which offers

enhanced reliability and performance. Furthermore,

Peermesh will replace the traditional Transmission Control

Protocol (TCP) with the more modern QUIC protocol,

known for its low latency and efficient connection

establishment, particularly advantageous in video and audio

streaming contexts. Another planned enhancement is to

upgrade the application layer protocol from HTTP/2 to

HTTP/3, which will allow Peermesh to benefit from

improved performance, connection speed, and security. In

addition to these technical upgrades, the development

roadmap will include gathering user feedback to

continuously refine the application’s functionality. This

feedback loop will guide additions and improvements,

allowing Peermesh to evolve in alignment with user needs.

Future versions of Peermesh will also feature advanced

customizability options, enabling users to personalize the

app to suit their preferences, which is crucial for creating a

tailored, engaging user experience. Lastly, Peermesh will

have dedicated native codebases for various device

platforms, ensuring the highest level of performance and a

consistent, optimized user experience across different device

types.

VI. .CONCLUSION

Peermesh represents an innovative step toward creating a

fully decentralized WebRTC application, built with modern

design principles, robust security, and a user-friendly

interface. Its decentralized architecture, enhanced by

blockchain technology, will allow users to connect and

share audio-visual content across the globe with greater

International Journal of Engineering Applied Sciences and Technology, 2025
Vol. 9, Issue 12, ISSN No. 2455-2143, Pages 121-128

Published Online April 2025 in IJEAST (http://www.ijeast.com)

128

privacy and control. The forward-looking approach of

adopting new standards, like the QUIC protocol and

HTTP/3, underscores Peermesh's commitment to remaining

at the forefront of real-time communication technology.

Furthermore, the focus on user feedback and customizable

features will foster an adaptive platform that can evolve

based on user needs and preferences, ensuring Peermesh

remains relevant in the competitive landscape. By

developing separate codebases for different platforms,

Peermesh aims to deliver optimal performance and seamless

functionality across various devices, enhancing user

satisfaction. With these strategies, Peermesh is well-

positioned to become a significant player in decentralized,

real-time communication, providing a powerful tool for

content creation and sharing in an increasingly

interconnected world.

VII. REFERENCES

[1]. Beck Kent, 2001, Manifesto for Agile Software

Development, https://agilemanifesto.org.

[2]. Schwaber Ken, Beedle Mike, 2002, Agile Software

Development with Scrum, Prentice Hall, pp.1–176.

[3]. Highsmith Jim, 2002, Agile Software Development

Ecosystems, Addison-Wesley, pp.55–78.

[4]. Williams Laurie, Cockburn Alistair, 2003, Agile

Software Development: It’s about Feedback and

Change, Computer, 36(6), pp.39–43.

[5]. Dyba Tore, Dingsøyr Torgeir, 2008, Empirical

Studies of Agile Software Development: A

Systematic Review, Information and Software

Technology, 50(9-10), pp.833–859.

[6]. Babar M.A., Paik Hye-young, 2009, Using Scrum

in Global Software Development: A Systematic

Literature Review, Global Software Engineering,

ICGSE 2009, Pg175–184.

[7]. VersionOne Inc., 2018, 12th Annual State of Agile

Report, www.stateofagile.com.

[8]. Augustine Sanjiv, Payne Chris, Sencindiver Frank,

Woodcock Sally, 2005, Agile Project Management:

Steering from the Edges, Communications of the

ACM, 48(12), pp.85–89.

[9]. Chow Tsun, Cao Dac-Buu, 2008, A Survey Study

of Critical Success Factors in Agile Software

Projects, Journal of Systems and Software, 81(6),

pp.961–971.

[10]. Abrahamsson Pekka, Salo Outi, Ronkainen Jussi,

Warsta Juhani, 2002, Agile Software Development

Methods: Review and Analysis, VTT Publications,

pp.3–107.

[11]. Boehm Barry, Turner Richard, 2003, Balancing

Agility and Discipline: A Guide for the Perplexed,

Addison-Wesley, pp.34–66.

[12]. Nerur Sridhar, Mahapatra Radhakrishna,

Mangalaraj George, 2005, Challenges of Migrating

to Agile Methodologies, Communications of the

ACM, 48(5), pp.72–78.

[13]. Conforto Edivandro Carlos, Salum Fabiano,

Amaral Daniel, da Silva Sergio Luis Maranzato, de

Almeida Luis Fernando, 2016, The Agility

Construct on Project Management Theory,

International Journal of Project Management,

34(4), pp.660–674.

[14]. Pikkarainen Minna, Haikara Jari, Salo Outi,

Abrahamsson Pekka, Still Jukka, 2008, The Impact

of Agile Practices on Communication in Software

Development, Empirical Software Engineering,

13(3), pp.303–337.

[15]. Misra Subhajit, Kumar V., Kumar U., 2009,

Identifying Some Important Success Factors in

Adopting Agile Software Development Practices,

Journal of Systems and Software, 82(11), pp.1869–

1890.

